Chapter 1

Measurements

Density

compares the mass of an object to its volume
$D=$ mass $=g$ or g volume mL cm^{3}
\qquad
Note: $1 \mathrm{~mL}=1 \mathrm{~cm}{ }^{3}$

Osmium is a very dense metal. What is its density in $\mathrm{g} / \mathrm{cm}^{3}$ if 50.00 g of the metal occupies a volume of $2.22 \mathrm{~cm}^{3}$?

1) $2.25 \mathrm{~g} / \mathrm{cm}^{3}$
2) $22.5 \mathrm{~g} / \mathrm{cm}^{3}$
3) $111 \mathrm{~g} / \mathrm{cm}^{3}$

4) Placing the mass and volume of the osmium metal into the density setup, we obtain
$D=\underset{\text { volume }}{\text { mass }}=\frac{50.00 \mathrm{~g}}{2.22 \mathrm{~cm}^{3}}=$
$=22.522522 \mathrm{~g} / \mathrm{cm}^{3}=22.5 \mathrm{~g} / \mathrm{cm}^{3}$

A solid displaces a matching volume of water when the solid is placed in water.

density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ of 48 g of a metal if the metal raises the level of water in a graduated cylinder from 25 mL to 33 mL ?

1) $0.2 \mathrm{~g} / \mathrm{c} \mathrm{om}$
2) $6 \mathrm{~g} / \mathrm{m}$
3) $252 \mathrm{~g} / \mathrm{c} \mathrm{m}$

4) $6 \mathrm{~g} / \mathrm{cm}^{3}$

Volume (mL) of water displaced

$$
=33 \mathrm{~mL}-25 \mathrm{~mL}=8 \mathrm{~mL}
$$

Volume of metal (c Pn)

$$
=8 \mathrm{~mL} \times \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}=8 \mathrm{~cm}^{3}
$$

Density of metal =

$$
\frac{\text { mass }}{\text { volume }}=\frac{48 \mathrm{~g}}{8 \mathrm{~cm}^{3}}=6 \mathrm{~g} / \mathrm{cm}^{3}
$$

(K) Karo syrup ($1.4 \mathrm{~g} / \mathrm{mL}$), (V) vegetable oil ($0.91 \mathrm{~g} / \mathrm{mL}$,) (W) water ($1.0 \mathrm{~g} / \mathrm{mL}$)
1)

I

A substance has a density of $3.8 \mathrm{~g} / \mathrm{mL}$.
$\begin{array}{ll}\text { Density } & =3.8 . \mathrm{g} / \mathrm{mL} \\ \text { Equality } & 3.8 \mathrm{~g}=1 \mathrm{~mL}\end{array}$
Conversion factors.

$$
\frac{3.8 \mathrm{~g}}{1 \mathrm{~mL}} \text { and } \frac{1 \mathrm{~mL}}{3.8 \mathrm{~g}}
$$

 galin, is $0.702 \mathrm{~g} / \mathrm{mL}$. What is gasoline, is $0.702 \mathrm{~g} / \mathrm{mL}$. What is the mass, in kg , of 875 mL of octane?

1) 0.614 kg
2) 614 kg
3) 1.25 kg

Unit plan: $\mathrm{mL} \square \mathrm{g} \square \mathrm{kg}$
Equalities: $1 \mathrm{~mL}=0.702 \mathrm{~g}$ and $1 \mathrm{~kg}=1000 \mathrm{~g}$ Setup:
$875 \mathrm{~mL} \times \frac{0.702 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~kg}}{\begin{array}{c}1000 \mathrm{~g} \\ \text { density } \\ \text { factor }\end{array}} \times \begin{gathered}\text { metric } \\ \text { factor }\end{gathered}, 614 \mathrm{~kg}$

If blood has a density of $1.05 \mathrm{~g} / \mathrm{mL}$, how many liters of blood are donated if 575 g of blood are given?

1) 0.548 L
2) 1.25 L
3) 1.83 L

14

Unit Plan: $\mathrm{g} \rightarrow \mathrm{mL} \rightarrow \mathrm{L}$

$575 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{1.05 \not \rho \mathrm{~g}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.548 \mathrm{~L}$

A group of students collected 125 empty aluminum cans to take to the recycling center. If 21 cans make 1.0 pound of aluminum, how many liters of aluminum ($D=2.70 \mathrm{~g} / \mathrm{cm}^{3}$) are obtained from the cans?

1) 1.0 L
2) 2.0 L
3) 4.0 L
4) 1.0 L

125 cans x 1.0 lb $\times 454 \mathrm{~g} \times 1 \mathrm{~cm}^{3}$
21 cans $\quad 1 \mathrm{lb} \quad 2.70 \mathrm{~g}$
$\times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=1.0 \mathrm{~L}$

3 metal sampies. VVnich one wili alspiace the greatest volume of water?

12
3

Discuss your choice with another student.

