

http://solarsystem.nasa.gov/multimedia/gallery/Earth Moon.jpg

Before students can understand the reason for phases, they need to understand:

- The Moon orbits the Earth
- The Moon orbit at an angle with respect to the Earth's orbit around the Sun

- The Moon doesn't shine on its own; it reflects sunlight
- The scale of the Moon and Earth's sizes and distance

Waxing Crescent (several days) 1st Quarter

New (couple days)

Waxing Gibbous (several days)

Full

Waning Gibbous (several days)

3rd Quarter

Waning Crescent (several days)

New

- The Sun shines on the Moon.
 - When the sunlight reflects off the Moon's far side, we call it a New Moon
 - When the sunlight reflects off on the Moon's near side, we call it a Full Moon
 - Between New and Full, we see parts of the daytime side of the Moon.

Golfball and Blacklight Activity

starchild.gsfc.nasa.gov/docs/StarChild/questions/phases.htm

- The Sun and Moon occasionally line up so that we have an eclipse.
 - These eclipses happen every year
 - To see a solar eclipse, you need to be on a particular part of the Earth

When the Earth's shadow covers the Moon, we have a lunar eclipse

- Penumbral lunar eclipse—the Moon only passes through the penumbra of Earth's shadow
- Partial lunar eclipse—part of the Moon passes through the umbra of Earth's shadow
- Total lunar eclipse—the entire Moon passes through the umbra of Earth's shadow

• Who on Earth will be able to see a lunar eclipse? Anyone who can see the Moon (anyone who is on the nighttime side of the Earth during the eclipse)

- The Earth's atmosphere filters some sunlight and allows it to reach the Moon's surface
- The blue light is removed—scattered down to make a blue sky over those in daytime
- Remaining light is red or orange
- Some of this remaining light is bent or refracted so that a small fraction of it reaches the Moon
- Exact appearance depends on dust and clouds in the Earth's atmosphere

- Mar 3, 2007, total lunar eclipse— partial eclipse visible in USA
- Aug 28, 2007, total lunar eclipse— partial eclipse visible in USA
- Feb 21, 2008, total lunar eclipse
 – total in eastern
 USA and Texas
- Aug 16, 2008, partial lunar eclipse– not visible in USA

- When the Moon's shadow covers part of the Earth
- Only happens at New Moon
- Three types: Annular, Partial, and Total

- Observers in the "umbra" shadow see a total eclipse (safe to view the Sun); can see the corona
- Those in "penumbra" see a partial eclipse—not safe to look directly at Sun
- Only lasts a few minutes
- Path of Totality about 10,000 miles long, only 100 miles wide

- When the Moon is too far to completely cover the Sun—the umbra doesn't reach the Earth
- Sun appears as a donut around the Moon

- Mar 19, 2007, partial solar eclipse— visible in Asia and Alaska
- Sep 11, 2007, partial solar eclipse— visible in South America and Antarctica
- Feb 7, 2008, annular solar eclipse
 – visible in Antarctica and Australia
- Aug 1, 2008, total solar eclipse– visible in Canada, Greenland, Europe and Asia
- Next Total Solar Eclipse in USA—August 21, 2017

- The Moon's gravity tugs on the Earth.
 - It pulls the most on the part of Earth closest, which raises the atmosphere, the oceans, and even the rocks (a little)
 - It pulls the least on the part of Earth that's farthest, which allows the oceans and atmosphere to be further from the Moon (and higher)
 - The Sun's gravity does the same thing, but to a lesser extent